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Abstract: Quantitative indoor monitoring, in a low-invasive and accurate way, is still an unmet need
in clinical practice. Indoor environments are more challenging than outdoor environments, and are
where patients experience difficulty in performing activities of daily living (ADLs). In line with the
recent trends of telemedicine, there is an ongoing positive impulse in moving medical assistance and
management from hospitals to home settings. Different technologies have been proposed for indoor
monitoring over the past decades, with different degrees of invasiveness, complexity, and capabilities
in full-body monitoring. The major classes of devices proposed are inertial-based sensors (IMU),
vision-based devices, and geomagnetic and radiofrequency (RF) based sensors. In recent years, among
all available technologies, there has been an increasing interest in using RF-based technology because
it can provide a more accurate and reliable method of tracking patients’ movements compared to
other methods, such as camera-based systems or wearable sensors. Indeed, RF technology compared
to the other two techniques has higher compliance, low energy consumption, does not need to be
worn, is less susceptible to noise, is not affected by lighting or other physical obstacles, has a high
temporal resolution without a limited angle of view, and fewer privacy issues. The aim of the present
narrative review was to describe the potential applications of RF-based indoor monitoring techniques
and highlight their differences compared to other monitoring technologies.

Keywords: gait analysis; indoor positioning; fall detection; tremor analysis; vital signs monitoring;
sleep monitoring; telemedicine

1. Global Overview on Current Monitoring Systems

In this narrative review, we describe, as a main aim, the potential applications of
RF-based indoor monitoring techniques and highlight differences with other monitoring
technologies. In order to provide an overview on the topic, we first describe the features
of the most-used existing technologies for outdoor and indoor monitoring, compare their
performance and finally explore their clinical applications for gait analysis, fall detection,
tremor assessment, vital signs, and sleep monitoring.

The objective quantitative and continuous assessment of motor performances and the
monitoring of vital signs are currently a crucial issue not only for professionals but also
for patients as it could improve clinical practice by providing a careful follow-up and a
more tailored therapy. Recent trends in the field of personalized medicine highlighted the
necessity of empowering medicine with available telemonitoring technologies [1]. Good
example are given by movement disorders like Parkinson’s disease [2–8], dystonia [9–11]
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or tremor [12–15], in which telemonitoring solutions are a promising approach to improve
the diagnostic and therapeutic process [11,16]. This approach has been further motivated
by the upcoming requests of patients suffering from chronic disorders and their caregivers
to receive customized therapies with high accuracy standards and at low costs, since indoor
activities appear to be globally more demanding for older people for various reasons. First,
indoor environments can be narrow or wet and generally complicated by the presence of
objects or moving people: sometimes, even a simple walk in such a highly constrained
scenario can increase the risk of a fall for an old-aged subject. Second, the activities of daily
living (ADLs) frequently require more fine and precise actions, e.g., cleaning, cooking, or
dressing, than outdoor activities. Finally, time spent indoors is generally preferred by frail
patients, who tend to consider these locations as “safer”. Taking into account these facts,
focusing on indoor activities monitoring is a promising prospect for patients. Furthermore,
over the last years, a positive impulse for medical assistance has been achieved by the
introduction of contactless clinical assessment systems, with the possibility for the patient
to be visited not only in the hospital but also in an at-home setting, consistent with recent
trends of telemedicine. In the context of a progressively older and chronic-illness-affected
population, telemedicine has been challenged to improve the efficacy of existing human
activity monitoring models, e.g., to prevent acute worsening and falls. It is worth noting
this is totally in line with the wide expansion of smart homes that offer the possibility
to connect sensors and smart devices to a centralized network where the recorded data
can also be used to train machine learning models. Recognition of activity patterns in
smart homes has demonstrated promising results [17]. Moreover, as highlighted in [18,19],
changes in the amount of global activity, percentage of time spent in different rooms and
type of activity performed by a subject can be an early indirect sign of neurodegenerative
disorders such as dementia. Major classes of devices proposed for movement detection are
inertial, optical, geomagnetic-based and radar sensors.

1.1. Inertial Monitoring

For outdoor activities wearable devices offer better performances since they can follow
the subject in any location [20]. Instead, camera and RF-based devices have limited applica-
tion outdoors due to their limited range of detection, which is strictly dependent on the
distance/angle from the sensor. Inertial-based devices have been widely investigated in the
literature [21]: they can estimate the position of a person by combining data from accelerom-
eters [22], gyroscopes [23], acoustic sensors [24], and even from smartphones [25,26]. Fur-
thermore, they globally share the same mechanical principle, i.e., they need to be worn or
be in contact with the subject’s body. Their features allow them an extensive range: high
accuracy, low costs, light-weight size, little hindrance to natural movement and long-term
monitoring [27]. In addition, recent studies have highlighted the potential role of integrat-
ing machine learning algorithms with data collected from these sensors as a diagnostic tool,
especially in the movement disorder clinic [28–33]. Machine learning models can achieve
high classification accuracy since they can “learn” from large-scale datasets by extracting
features, such as kinematic parameters of gait [31–33], tremor [28], and pattern recognition.
In particular, unsupervised methods are generally preferred, due to their autonomous
learning without any human support [34]. However, some drawbacks are intrinsically
related to the properties these devices are based on. First, the correct position of the tool
on the patient’s body is required for a high-quality recording of kinematic parameters. In
addition, once placed on a specific body part, the recordings are limited to that site [35].
The battery must be periodically charged, and often replaced with a new one. Researchers
tried to solve this problem with the introduction of discrete instrumented insoles based on
pressure sensors, which maintain good accuracy standards with low energy consumption,
but the insertion of this additional insole in a shoe limited their usability [36]. Finally,
monitoring in more dangerous scenarios, such as in bathrooms, could be very difficult,
since the usage of wearable solutions is not always viable, e.g., during a shower.
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1.2. Camera-Based Monitoring

Camera-based solutions outperformed the limitations of wearable sensors with regard
to invasiveness as strict contact with the body is not needed [18,37,38]. This kind of moni-
toring system takes advantage of depth data with the possibility to decompose movement
in its constitutive elements [18,39]. Vision-based devices are generally integrated with deep
learning algorithms that process acquired data, that belong to different classes, usually
organized in fall or non-fall classes [18]. However, limited angle of view, barriers, light con-
ditions, and necessity of colored markers on the subject’s body represent major drawbacks.
Last but not least, camera-based devices raise major privacy concerns which are quite
critical, since monitored people and their living environments are completely depicted.
Despite the aforementioned pioneer investigations in the literature, the described indoor
localization and motion-tracking models appear inadequate to guarantee a continuous and
non-invasive monitoring.

1.3. Radio Frequency Monitoring

Researchers had to re-think the paradigm of movement monitoring by considering
alternative models that had to simultaneously not interfere with the clinical visit and not to
be affected by physical obstacles, e.g., people, clothes, and walls. New standards in indoor
assessment should focus on the introduction of user-friendly contactless equipment as light
and small as possible, providing discrete monitoring under a natural environment. It is
mandatory to think about alternative solutions of non-invasive tracking which can also pre-
serve a good measurement quality. The pervasiveness of the new communication standards
on people’s everyday life and the recent reconfiguration of radar architectures have gen-
erated growing interest in the medical community for radio-frequency (RF) technologies.
RF-based techniques represent a novel and heterogeneous category of indoor localization
systems, whose physical principle takes advantage of both wave emission and interaction
between waves and surfaces encountered to detect objects in the space. RF-based systems
are not dependent on lighting [18,38,40], less affected by physical hindrances [41,42], have
poor dependence on subject compliance and are also characterized by low energy con-
sumption. For this purpose, currently used techniques include wireless communication
systems, such as Wi-Fi, Long-Term Evolution (LTE), Bluetooth, Radio Frequency Identifi-
cation (RFID) and Ultra-Wide Band (UWB) [43]. Easy access and wide availability make
Wi-Fi a viable fingerprinting-based method. Wi-Fi-based indoor localization is feasible due
to non-line-of-sight (NLoS), low cost, high reliability and wide availability of Wi-Fi-enabled
devices [43]. In Figure 1 the working process of Wi-Fi fingerprinting-based method is
shown. He et al. [44] showed that Wi-Fi fingerprinting, without knowing the exact access
points (APs) locations, can achieve high feasibility in indoor positioning. Furthermore, a
mobile application has been proposed for the estimation of the position of a user within a
building by using Wi-Fi technology [45]. However, more complex large-scale positioning
suffers from many other interferences [46]. In addition, it has been demonstrated that Wi-Fi
integrated with machine learning algorithms can determine a building’s occupancy profile:
in an on-site experiment an occupancy prediction model using Wi-Fi probes showed accu-
racies between 80% and 93.9% [47]. RF fingerprinting has also exploited the LTE signals
already available in an environment not only for indoor [48–51] but also for outdoor [48]
localization since they are transmitted by public base stations.

The RFID positioning system consists of readers and tag devices. Multiple infrared
sensors placed in an indoor environment are exploited to estimate the distance and angle
of the signal source. Relatively good accuracy standards are obtained for empty indoor
environments, but drawbacks are related to the complexity of the model and the marked
susceptibility to physical obstacles [43]. In the review by Li and Becerik-Gerber [52], the
major location-sensing methods used in RFID-based solutions are summarized, deepening
the RFID-based indoor location-sensing (ILS). The authors stated that no single solution
satisfies all criteria for widespread validation [52].
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Figure 1. The working process of Wi-Fi fingerprinting indoor localization. A comparison of collected
fingerprints in the database helps to estimate the locations of different clients (reproduced under the
terms and conditions of the Creative Commons Attribution (CC BY) license from [43]).

Bluetooth Low Energy (BLE) technology raised attention for its availability in smart-
phone devices, low cost, and power demand [53]. BLE positioning uses information from
beacons installed in a building and has found application for remote healthcare monitor-
ing [54,55], indoor navigation [56] and activity recognition [57]. Occupancy estimation in
an indoor environment can be obtained only with BLE beacons, a mobile application, and a
server. In the experimental models of [Filippoupolitis, Oliff [53,58]], BLE integrated with
three machine learning classifiers (k-nearest neighbors, logistic regression and support
vector machine) was tested to unveil the presence of subjects inside an office, achieving
promising results for occupancy estimation. A network of BLE beacons was further used
with a machine learning model to study set of occupancy profiles and patterns of an
area [59]. In a study by Tekler, Low [60], a two-week data collection was conducted to
identify occupation patterns in a university office environment. A non-intrusive occupancy
monitoring approach based on pre-existing BLE in smartphones was applied to track the
occupants’ movement patterns, without any application installation.

A fascinating proposal is to focus radar-based localization systems on gait analysis,
vital signs, sleep monitoring, and fall prevention for older patients, especially in indoor
settings. In Figure 2, the Emerald sensor is presented [61]. It has been validated for
different clinical settings: it operates by transmitting very low power wireless signals and
infers respiratory signals, gait speed, sleep patterns and time spent in different locations
at home (activity graph) by the analysis of signal reflections due to human and inanimate
objects [62,63]. It can also collect data continuously for prolonged periods, without any
burden for patients or caregivers (see Figure 2).

In particular, Impulse-Radio Ultra-Wideband (IR-UWB) indoor monitoring systems
are based on radar technology and have been demonstrated to be accurate and reliable in a
variety of indoor environments [64], while the reliability is poor for outdoor monitoring.
Furthermore, precision standards are generally lower than inertial-based sensors. Differ-
ently from the camera-based approaches, the monitoring of a single individual movement
over a group of people represents a big challenge for RF systems. The usage of antenna
arrays [65] or Multiple-Input Multiple-Output (MIMO) [66] techniques represent the most
common solution to isolate signals from multiple subjects. Another example is given by the
breathing separation module provided by DeepBreath [67] which is able to reconstruct the
correct breathing signals of multiple co-located individuals combining an antenna array to
Independent Component Analysis (ICA). UWB monitoring methods include device-free
or device-based approaches. A technical explanation of this distinction is presented later.
The practical consequences are a global better accuracy for device-based UWB, also in
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real life conditions, i.e., when moving people surround the subject of interest. However,
a device-based approach does not generally provide full body monitoring and can suffer
from psychological conditioning of the monitored person. In addition, from a clinical point
of view, tremor detection will be better performed with a device-based system, while gait
and posture monitoring will require a device-free one. However, these powerful adjust-
ments and accuracy standards can further worsen in the singling-out process in real-life
conditions, i.e., people moving, if compared to inertial-based devices. A potential drawback
is that machine learning models need to be trained since they can “learn” from large-scale
datasets. For this purpose, it is worth noting that if the surrounding environment changes,
i.e., objects are displaced or furniture in the house is moved to other locations, the accu-
racy performance lowers, and the model requires to be trained with new datasets. Such
intrusiveness in people’s everyday lives also raises confidentiality issues since subjects are
pervasively monitored during the day in all rooms and locations of the place of interest.
However, the privacy concerns of such a monitoring system seems to be lower compared to
the camera-based ones, since this technology is more discrete and tolerable for the subjects.
The number, activity and position of monitored people are not observed in their physical
appearance but depicted as a variation of signals and subsequent extrapolated data.
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Figure 2. The Emerald RF sensor. Picture (A) shows the analogy with a Wi-Fi router. in the picture
(B), recording of respiration, gait speed, sleep efficiency and daily activities patterns are collected.
Finally, the picture (C) exhibits the possibility for qualified clinicians to remote acquire the recorded
data (Reproduced under the terms and conditions of the Creative Commons Attribution (CC BY)
license from [61]).

1.4. Geomagnetic Monitoring

Among all of the aforementioned signals, the earth magnetic field is a physical medium
with promising properties for indoor localization, thanks to its pervasiveness, indepen-
dence from extra infrastructure and dependence on crowdsourcing [68] (Figure 3). In-
door magnetic fields can achieve good positioning precision at almost no investment and
infrastructure-free compared to other technologies [69,70]. Some studies have pointed out
the potential outperforming of geomagnetic positioning power compared to traditional
RF-based technology in differentiating locations, but have also pointed out the need for
real-time and constant location computations with very stable fingerprints and a low accu-
racy [71]. This has especially been motivated by the increasing power in location estimation
due to interference caused by indoor structures. Spatial anomalies in the magnetic field can
be detected by a smartphone’s magnetometer and applied as a method of fingerprint indoor
localization [68,72]. The practical usage firstly requires the measurement of the geomag-
netic signals by the smartphone and the computation of a signal map. Then, localization is
established and related signals are processed by a certain algorithm and the corresponding
location is returned to the target user [69]. The superiority of geomagnetic-based devices
for outdoor monitoring on RF-based technology is overwhelmed by its low positioning
resolution standards, in the order of meters, that subsequently limit the application of
geomagnetism for fine activities discrimination, such as tremor and falls [73–75].
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Figure 3. Plan of a building used to test an algorithm for the construction of the magnetic fingerprint.
The vertical bar on the right represents the magnetic field intensity. In the floor plan, colour intensity
correlates with people activity. Data were collected from six people walking with their smartphones
and the walking paths were then acquired (reproduced under the terms and conditions of the Creative
Commons Attribution (CC BY) license from [70]).

1.5. IR-UWB: Physical Basis

Impulse-Radio Ultra-Wideband (IR-UWB) is standardized in IEEE 802.15.4-2015, and
is currently the most performant radio positioning technology with centimetre-level ac-
curacy and is used widely in industrial applications [76]. The Federal Communications
Commission (FCC) allows the commercial use of Ultra-Wideband (UWB) devices in the
frequency band from 3.1 GHz to 10.6 GHz (further divided into individual channels [76]
with a very restricted equivalent isotropic radiated power (EIRP) of −41.3 dBm/MHz [77]).
The safety issue related to the exposure of humans to the electromagnetic field emitted
by the UWB radar is regulated by the guidelines emitted by ICNIRP [78]. This guideline
defines the restriction on the basis of the specific absorption rate (SAR), whose values are
directly linked to health effects. Research models on the topic rely on UBW signals that
satisfy the emission levels issued by the FCC [79]. In the model proposed by Cavagnaro,
Pisa [80], a layered body model was considered to evaluate the influence of the different
tissues of the human body on the non-ionizing radiation absorption. Results demonstrated
that the power actually absorbed from the human body respected the imposed guideline
restrictions [80]. Furthermore, the planar inverted cone antenna (PICA) showed the lowest
risk of damaging human tissue compared to the other two antennas (CPW-fed inverted
cone antenna, and broadband monopolar antenna) with absorption levels below the limits
set by FCC [81]. However, the present article does not strictly refer to the standard defined
in IEEE 802.15.4-2015 [76], but more generally to any system that employs very short
duration and high bandwidth pulses for their communications. It is worth noting the term
UWB generally applies to any radio communication system based on a wide bandwidth,
typically defined as either a 10 dB bandwidth greater than 20% of the centre frequency or
greater than 500 MHz in absolute terms [82]. The methods used for IR-UWB positioning
are common for all acoustic and radio wave positioning systems, and involve the collection
of location information from radio signals travelling between the node to be localised and
a number of reference nodes with known positions [83–85] (Table 1).



Sensors 2022, 22, 8486 7 of 25

Table 1. IR-UWB positioning system metrics.

IR-UWB Positioning Metric Definition

Signal Strength (SS)
The target measures the signal strength for received
signals from reference nodes in order to use signal

strength as an estimator of the distance from them [86]

Time of Arrival (ToA)

The location is the intersection of circles with radius
equal to the distance between the target and reference
nodes and calculated as the one-way propagation time

between them [87–89].

Time Difference of Arrival (TDoA) It is based on comparing the time difference between the
target and at least three reference nodes [90,91].

Angle of Arrival (AoA): The location can be found from the intersection of the
angle line for each reference node [92–94].

Signal reflection and diffraction imply the signal received by an antenna is the sum
of the attenuated, delayed and possibly overlapping versions of the transmitted signal,
i.e., the multipath components. This phenomenon makes localization very challenging,
especially in indoor environments, where the NLoS multipath components are predominant.
IR-UWB, instead, can provide high ranging and positioning accuracies especially in indoor
environments due to its high temporal resolution, low power consumption and multipath
immunity [95–97]. Moreover, additional mitigation methods have been developed in order
to manage the performance degradation problem for NLoS localization, such as the usage
of a sparse pseudo-input Gaussian process (SPGP) [98] or the combination of the output
of an extended Kalman filter (EKF) and an extended unbiased finite impulse response
(EFIR) filter via probabilistic weights [99]. Furthermore, the accuracy of IR-UWB position
estimates during strenuous dynamic activities in which moves are characterized by fast
changes in direction and velocity has also been evaluated [100]. An in-depth analysis for
the selection of the optimal position to mount the UWB sensor for the performance of
athletes during training and competition led to a median ranging error of 22 cm [101].
The “standard” UWB positioning methods are “device-based”, since a subject needs to
wear one or multiple transceivers that proactively interact with the IR-UWB reference
nodes to be localized. In the “device-free” approach, instead, there is no need for people
to carry any device. The most traditional device-free localization approach is based on
video image processing, but, as previously evidenced, this has several limitations and
drawbacks such as being prone to occlusion, insufficient lighting [18], high deployment
costs and privacy concerns [102]. This technology is instead based on the fact that the
RF propagation channel is continuously modified by the presence of people. As already
stated, a transmitted signal propagates to the receiver through multiple paths and each
one provides a differently delayed, attenuated, and phase-shifted copy of the transmitted
signal. Hence, the received signal results in a combination of several multipath components.
The presence and position of people in an environment can deeply affect the multipath
environment while their motion can introduce the Doppler effect (see Figure 4a,b). This
in turn means that it is possible to analyze RF signals, e.g., Wi-Fi [103] and LTE [49,51],
to identify changes produced by the presence of people and their activity [102]. Recently,
the device-free approach has also been exploited to perform localization [104–107], people
counting [102,108–111] and activity recognition [107,112–114] via IR-UWB signals. Due to
the mentioned characteristics, the measurement and quantification of activity in clinical
movement disorders via an IR-UWB radar sensor is also very promising. For example, this
new technology has many advantages over traditional tremor detection methods: the UWB
system does not require any calibration for tremor amplitude estimation, unlike the video
that needs a reference object with a known size in the observed frame. It is worth noting
radar systems based on low frequencies, i.e., less than 1 GHz, are not used to detect tremor
because of their low temporal and spatial resolution of just a few centimetres [115], which
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is not adequate for detection of tremors. Moreover, UWB frequencies help to detect still
or moving bodies without suffering from interference of other sensors achieving accuracy
performances up to 10 cm [43], detecting even fine movements, like breathing. In fact, vital
signs monitoring with RF-systems is a non-contact and harmless method to the human
body, causing no inconvenience for the patient. Extremely wide transmission bandwidths
enhance location accuracy and material penetration, using a large portion of the radio
spectrum and low energy levels. High penetrability and non-intrusive standards let the
radar sensor invisibly track movements in all indoor environments. This type of movement
detection does not require high levels of compliance from the subjects since the radar sensor
is lightweight and has no contact to the body. Particularly, they can provide high ranging
and positioning accuracies especially in indoor environments [64] and are insensitive
to poor lightning conditions [18]. This system can provide a day-long and simultaneous
monitoring of a large number of patients in different indoor settings, such as homes, hospitals,
and nursing homes. However, the full potential of this indoor monitoring system requires
methods and algorithms able respectively to visualize and process the collected data.
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Figure 4. (a). Device-based approach. (b). Device-free approach. Effect of human presence on
multipath environment. An RF signal propagates from the transmitter to the receiver via multiple
paths, i.e., multipath components. The presence and position of people furtherly affect the multipath
environment, while people motion introduces signal frequency shifts, i.e., Doppler effect.

2. Clinical Applications
2.1. Gait Analysis and Indoor Positioning

Gait analysis is widely used in medicine, and to date the less intrusive technology
were based on IMU wearable sensors [87] and camera systems [18,39], however different
studies showed that UWB technology could be used for gait analysis. The compact size
and versatile functionality of inertial-based devices made them a feasible option for integra-
tion with other technical solutions for indoor localization. Some studies investigated the
combination of IMU and UWB sensors. The UWB-IMU integrated solution should ideally
take advantage of both UWB’s high localization accuracy and IMU’s NLoS localization and
motion sensing [43]. Corrales, Candelas [116] used a Kalman filter algorithm to fuse the
inertial motion system and the UWB positioning system for motion and position tracking,
while Wang and Li [117] integrated IMU and UWB devices for pedestrian positioning and
the combined solution and improved the positioning error to about 0.7 m, which is not ideal
for many indoor localization applications. Zhang, Zhang [43] proposed a system composed
of an accelerometer and gyroscope for human indoor localization and motion tracking.
Authors analyzed gait during one-step walking and arbitrary path continuous walking. In
the measurement of one-step walking the average errors of the IMU and UWB modules
were, respectively, 4.02 cm and 4.70 cm, while the UWB-IMU integrated system improved
the accuracy and stability for localization tracking in the tests with rectangular paths. In the
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tests with an arbitrary path, the UWB-IMU integrated method improved both stability and
accuracy of localization performances, in fact the average position error of the combined
method was 7.58 cm, which was lower if compared to 11.59 cm and 12.64 cm, achieved by
the separate methods. Authors also measured the attitude variation of the foot, simulating
foot twisting during walking. The results obtained demonstrated the potentiality of the
developed sensor device for real-time gait analysis, measuring the abnormal foot attitude,
by the analysis of pitch and roll angles. The authors’ explanation focused on error accumu-
lation of the IMU measurements and the presence random errors that increased when there
was a NLoS occlusion between the sensor node and the UWB anchors. Systematic error
accumulation reduced the accuracy and required implementation with specific algorithms
also to observe the gradient of the UWB location and IMU location with aim of finding
barriers and correct the error. Ayena, Chioukh [118] proposed to combine the performances
of a radar sensor and a wearable device, such as an instrumented insole, worn at the foot
to evaluate the risk of falling during a simple clinical test. Data were recorded during a
timed up and go (TUG) test where a stride length (SL) was computed with three different
approaches. Each approach was based on an algorithm that calculated SL as a function
of the accelerations along the y-axis. The authors compared data recorded with insole
against the radar outputs and demonstrated that their integration is feasible and gives
the possibility to measure dynamics of gait with high accuracy standards. In particular,
for a full dataset from a TUG test, the approach based on the algorithm that established
a correlation between the maximum and minimum values, average of acceleration and
step length algorithm showed a root mean square error (RMSE) equal to 0.3675. Several
studies exposed the potential benefits on localization accuracy improvement by integrating
radar-based technology and IMU [119–122]. Best results showed an improvement of loca-
tion positioning from 3.0 m to 1.5 m with a probabilistic localization algorithm [119] and
achieved a localization error of 5.7 m over 5–10 min of indoor walking [120].

IR-UWB technology alone demonstrated promising results for the estimation of foot
clearance during walking [123]. Mahfouz, Kuhn [124] tested an UWB 3-D real-time tracking
system for an indoor line-of-sight environment with accuracy around 1 cm. Shaban,
Abou El-Nasr [64] proposed a low-cost and low-complexity wireless gait tracking system
suitable for gait analysis using wearable UWB transceivers, both for indoor and outdoor
measurements: the proposed system provided a ranging accuracy of 0.11 cm for the knee-
to-ankle distance. In a study by Qi, Soh [125], the authors considered foot clearance, i.e.,
the vertical distance between a foot and the ground during walking above ground, as a
key factor for a better understanding of the complicated relationship between falls and
gait. The authors of this study proposed a wearable system based on a pair of small and
light UWB antennas placed on a point approximating to the heel/toe of the foot, both
in stationary and dynamic conditions. In this way the reflected signal from ground was
captured and the distance was estimated via the signal propagation delay to capture both
stationary and dynamic measurements. The stationary experiment demonstrated a very
good level of adherence between the proposed UWB-based system and a standard motion
sensor with correlation coefficient value of 0.9604. Then, the authors allowed the subject to
walk forward over 5 metres at a normal speed for 3 times in order to measure foot clearance
during gait. In the same study, the authors defined foot clearance during walking as the
minimal/maximal vertical distance between the toe/heel and the ground during the swing
phase of the gait: the best Heel-to-ground Clearance (MaxHC) and Toe-to-ground Clearance
were respectively above 0.15 m and almost 0.2 m. Rana, Dey [126] analyzed human gait
with IR-UWB sensing, by the design of a noncontact and non-intrusive wireless gait analysis
tool ITERATOR, associated to Kinect Xbox One, that helped to capture 3D human motion
and track the skeleton of the human body [127]. The IR-UWB radar transmitted short
pulses that enabled the system to be employed in multipath environments. The root mean
squared error (RMSE) has been measured between proposed UWB prototype and Kinect
sensor results with RMSE resulted of less than 0.5. The proposed UWB-based models
demonstrated a non-intrusive, non-contact, wireless way able to recognize physiological
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gait dynamics and alterations of walking patterns. Different types of walking such as,
propulsive, waddling, steppage should be considered for future experiments, as suggested
by the authors themselves [126]. The usage of a UWB micro-Doppler radar has been
investigated to estimate walking speed [128,129] and to determine a relation between gait
velocity and cognitive functions in the elderly [130]. A WiGait-based strategy was designed
by Hsu, Liu [131]. This technology is a home sensor hanging on the wall like a picture
frame which is able to monitor gait velocity and stride length. WiGait infers a person’s
gait by analyzing the surrounding radio signals reflected off his body and does not require
him to wear a device. WiGait’s accuracy was between 96.0% and 99.8%, across all subjects
for the analysis of gait velocity, while for stride length varied between 88.4% to 99.3%.
Subsequently, in the presence of activity-based motion, simulating real conditions (in the
presence of desks, chairs and different household items), WiGait’s accuracy in computing
gait velocity ranged from 95.3% to 99.8%, while its accuracy in measuring the stride length
was between 85.9% to 99.8%. Fan, Li [132] proposed the RF-Diary, an RF-based method
that observes and captions in-home daily-life movements both in normal and poor light
conditions. To capture objects’ information, besides RF signals, RF-Diary also took in
consideration as input the home floormap marked with the size and location of static
objects, that provided information about the surrounding environment, enabling the model
to infer human interactions with objects. The proposed model obtained comparable results
to video-captioning in visible scenarios and continued to work effectively in dark and
occluded conditions, where videocaptioning methods failed due to the loss of the line of
sight. Integration of the floormaps into the model and the multi-modal feature alignment
both contributed significantly to improving performance. In Figure 5 an activity graph
of three subjects after becoming COVID negative is presented. This tool can objectively
quantify subjects’ daily behaviour, allowing to visualize daily and repetitive activities. In
particular, a temporal longitudinal view is shown, as concentric circles represent the days
since COVID negativization, from the inner most to the outermost circle, which is the last
day of monitoring. Time intervals outside the coverage of the wireless signals are inferred
from white patches. Yellow cones reveal the time spent in the subject’s room and the
blue ones represent bedtime, while blue circles mean bedtime. A deeper investigation on
people’s everyday activities can provide different insights about behavioural phenotyping.
For example, the absence of a regular routine could be a sign of subtle agitation and
cognitive impairment [61].

Movement disorders have also been tracked via human skeleton pose estimation. RF-
Pose is a neural network system that is able to infer 2-D human skeletons by transmitting
low-power FMCW (Frequency Modulated Continuous Wave) RF signals and receiving
their reflections. Experimental results demonstrated the radio-based system is almost as
accurate as the vision-based one used to train it [133]. RF-Pose3D represents an evolution
of the previous system which is able to perform 3D pose estimation achieving an average
error of 4.2 cm, 4.0 cm, and 4.9 cm along the X, Y, and Z axes respectively [134]. RF-Action
represents the first model for skeleton-based action recognition using radio signals in the
Wi-Fi range with a mean accuracy above 80% in both visible and occluded scenarios [135].
RF-Avatar leverages the same frequency range for 3D skeleton recovery and is able to
achieve in visibility a mean joint position error of 5.84 cm and mean vertex-to-vertex
distance of 1.89 cm, while for through-wall scenes and subjects wearing loose costumes the
values, respectively, increase to 6.26 cm and to 1.97 cm [136].
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Another promising indoor monitoring system, is the geomagnetic one. Sun, Wang [137]
proposed a fusion indoor positioning method that integrated both the pedestrian dead-
reckoning (PDR) and geomagnetic positioning by using the genetic-particle filter (GPF)
algorithm. PDR technology uses an accelerometer, gyroscope and magnetometer to obtain



Sensors 2022, 22, 8486 12 of 25

continuous positions instead of installing the signal transmitting stations [73,74]. PDR
and the geomagnetic positioning were integrated by using the genetic-particle filter (GPF)
algorithm: the mean positioning error and the RMSE were, respectively, of 1.72 m and
1.89 m. Moreover, 80% of the test points had a positioning error within 2.45 m. In a study
by Chung, Donahoe [75], the authors proposed an indoor positioning system that measured
pedestrian location inside buildings and across multiple floors using disturbances of the
Earth’s magnetic field caused by structural steel elements in a building and demonstrated
accuracy within 1 m 88% of the time in experiments in two buildings and across multiple
floors within the buildings.

In Figure 6, another model for floor identification based on magnetic fields is depicted.
In this three-step model user activity is firstly determined, then, the magnetic field is used
for floor identification. In the last step, floor change detection is achieved with the help of
accelerometer and magnetometer data [138].
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Figure 6. A three-step model for Floor Identification based on magnetic field data captured with
smartphone sensors. (reproduced under the terms and conditions of the Creative Commons Attribu-
tion (CC BY) license from [5]).

2.2. Fall Detection

Fall prevention for older patients, is a crucial quality of life improving approach in
preventive medicine. Mastorakis and Makris [139] designed a model that recognized the
start of a fall considering the exceeding of some thresholds on height and width-depth
of 3-D bounding box enclosing the human silhouette. A similar approach, using the 3-D
bounding box of the human, was adopted also in [140]. Nghiem, Auvinet [141] detected
falls through the vertical speed of the human head and body centroid related to the distance
to the ground: the authors obtained the correct classification of 29 falls out of 30. Similarly,
Zhang, Liu [142] detected falls by detecting the head region from the human body and
the floor level, using a depth reference image. More complex algorithms distinguish falls
and other actions in the method proposed in [143], based on the real-time detection of the
centre of mass of the moving objects. Then, a statistical model elaborates the probability of
a specific action: with a dataset of eight activities, the system achieved a sensitivity of 90%
and a specificity of 100% for the falling events. Planinc and Kampel [144] calculated the axes
of the head, shoulder centre, spine, hip and knees with the Microsoft Kinect cameras and
detected falls when the person was parallel to the ground floor and the distance between
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spine joint and the ground floor reduced [18]. Panahi and Ghods [38] designed a falling
detection method with an image-based SVM algorithm that recognized falls using the
distance of the person’s centroid to the floor. They attained sensitivity and specificity of
100% and 97.5%, respectively. Video assessment of movement has found application both
for the detection and localization of falls [18,38]. Particularly relevant is the application
of the UWB approach to fall monitoring and detection since it offers confidentiality and
does not require to wear any instrument [18,41,42]. An approach based on “smart floors”
and “sensing floors” has been postulated to record episodes of falls [145], by the analysis
of vibrations, pressure, acoustic signals or even occupied surface [145,146]. The use of a
UWB technology to detect falls in domestic environments was presented in [147], where the
performance of supervised and unsupervised fall detection were compared. The authors
applied an unsupervised approach to movement data recorded via an UWB sensor, placed
over the ceiling, to detect falls and distinguish them from other types of activities. Two
subjects simulated different types of movement activities including falls, normal walk,
fast walk and lying. In [148], a convolutional neural network (CNN)-based framework
was proposed to classify human actions into “Fall” and “Activities of daily living”. The
combination of convolutional layers and convolutional long short term memory (ConvL-
STM) demonstrated to be able to extract robust features for fall detection and outperform
the CNN-based methods [149]. Diraco, Leone [41] demonstrated the suitability of a radar
smart sensor based on IR-UWB sensing and micro-Doppler spectrograms for fall detection:
the micro-motion signature and unsupervised learning detected falls with sensitivity and
specificity greater than 97% and 90%, respectively. This study showed both the suitability
of the radar micro-movement signatures for fall detection and the necessity of a tailored
approach for each subject, due to specific fall dynamics. The literature reported for radar
sensors an accuracy rate for fall detection variables between approximately 80% up to
100%, and the corresponding false alarm rates between 20% down to close to 0% [18]. Fall
detection datasets gave a positive impulse to the diffusion of systems for fall detection: in
particular, work was speeded up with the already available data and tested algorithms.
Furthermore, a common dataset helped for a comparison of different approaches [24].

2.3. Tremor Assessment

Accelerometers and gyroscopes have been deployed also for tremor assessment [150].
Tremor frequency error measured with inertial devices is estimated to be less than
0.5 Hz [151]. Over the last years, inertial-based sensors [12–15,152] aroused increasing at-
tention in the field of fine movement monitoring in the at-home setting or even for objective
analysis of tremor. Video assessment of movement has found application for the tremor
assessment also with optical tracking systems [153–156]. In [154], a coloured marker with
specific properties of intensity and reflectivity was attached on the tremulous limb and then
tremor characteristics were computed by signal-processing techniques of the frames includ-
ing the tremulous body parts. Analysis of the literature reveals that the tremor frequency
estimation obtained by an ordinary video-based system is generally around 0.1 Hz [156].
In particular, in [156], the authors detected tremor frequency using video analysis and the
accuracy was compared against the frequency measured by the accelerometer. Results
showed that the difference between the frequency from the video and accelerometer was
more than 0.2 Hz only in 14% of data. Oikonomidis, Kyriazis [157] proposed a markerless
video system for hand tracking. However, markerless techniques were not as accurate as
other techniques [158] and the accuracy performance showed an inverse relation with the
distance between the camera and the patient. As a result, markerless video systems might
not be suitable to give the tracking accuracy needed for tremor characterization. Video
systems not only require reflective markers on the subject’s body [159], but are also much
more sensitive to variations of lighting in the setting [41]. In addition, several cameras,
calibration, and preprocessing techniques are required for a precise construction of each
frame. The expensive equipment and the necessity of line-of-sight between the subject and
the camera represent further major obstacles that have limited the diffusion of systems
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based on video detection of movement [160]. The possibility of tracking movement all day
long should be the gold standard for the creation of new high-performing video-monitoring
systems, since a continuous and pervasive motor assessment could provide, more complete
data from a medical point of view, increasing the reliability of the method. Possible privacy
concerns may arise from tracking people through walls during the whole day: a challenge-
response authentication protocol that prevent people from maliciously using RF signals to
see non-authorized areas is feasible [132]. Nowadays, this appears as a mere suspicion with
this technology, since framing a moving subject just for an angle of view approximately
corresponding to 60 degrees limits the suitability of this system in everyday life. Further-
more, the UWB acquisition system allows a global tremor assessment, i.e., taking into
account all tremulous body parts, and can also give information about patient kinematics,
which can improve diagnostic accuracy. The work of Blumrosen, Uziel [161] focused on the
quantification of tremor using an UWB-based WSN, in which each sensor node was used as
a radar to capture tremor during an observation period of 20 s with stationary conditions.
The experimental setup included three types of sources of disturbance, such as the presence
of metal reflectors, a wooden wall and a person moving his hand with an aluminum foil
in the background. The results showed that the sensor node was able to analyze tremor
characteristics and the estimation of tremor frequency had an average error of 0.01 Hz. The
authors exposed their confidence on the improvement of the performances by increasing
the number of sensors, introducing directional antennas, and using higher bandwidth
and radiation power. However, the true validity of this system should be tested in more
complex contexts, such as environments with thick walls, NLoS conditions, moving people,
larger distances between the sensor nodes and the patient, lower transmission power,
patients with multiple tremulous body part with different frequencies and amplitudes and
small antennas. Blumrosen, Uziel [162] also proposed a technology to assess tremor for the
diagnosis of neurological pathologies and its monitoring. A feasibility test was conducted
by examining the system performance against an arm model that fluctuated in the range
of clinical tremor frequencies (3–12 Hz). The UWB-based acquisition system showed a
frequency estimation error of less than 0.1 Hz and provided a set of tremor amplitudes
along the tremulous body part.

2.4. Vital Sign Monitoring

Since IR-UWB radars have a high resolution, they can be used to detect the fine
motion of objects [163]. This means that not only can large movements of the human
body but also that small movements, e.g., respiration rate (RR) [164–167], and heart rate
(HR) [165,168] can be detected. The need for contactless respiratory monitoring systems
has been further motivated due to the outbreak of the COVID-19 pandemics, as shown
in Figure 7. The physical principle for vital signs monitoring is not only based on the
evaluation of signal time of arrival but also on changes of frequency and phase after
interactions with the subject’s body [169]. IR-UWB and Doppler radars have been proposed
for vital sign monitoring [66,163]. These two systems show complementary characteristics,
since Doppler radars can estimate velocity but not position, suffering from artifacts due to
multiple people, while the IR-UWB technology offers a much higher range of resolution
even when multiple people are present. Li and Lin [170] proposed robust methods that
require the use of two identical radars for detecting vital parameters in presence of random
body movements. Hu and Jin [171] investigated the IR-UWB radar for HR and RR detection
with ensemble empirical mode decomposition (EEMD) and continuous wavelet transform
(CWT). Radar-based technologies outperformed even photoplestimography for vital sign
estimation, especially in contexts with multiple heartbeats, in both accuracy and privacy
standards [172]. Diraco, Leone [41] demonstrated the suitability of a radar smart sensor
based on IR-UWB sensing and micro-Doppler spectrograms for vital signs monitoring
during ADLs in presence of moving subjects in the home setting. Moreover, the authors
tested this model for detecting the vital signs during the post-fall phase, by training
30 subjects to simulate falls events. Yue, He [67] proposed a RF-based model to monitor
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the respiration signals of short-distanced people, also during the night. In particular, this
system, known as Deepbreath, used a frequency-modulated carrier waves (FMCW) radio
equipped with an antenna array, transmitting a low power wireless signal and capturing
its reflections. Subjects were asked to wear a respiration belt, then the signal bounced off
the people in the environment and got modulated by their breathing: the reflected signal
was used to track the person’s breathing. The complexity of breathing patterns and indoor
settings required integration with signal suppression modules. This system was further
implemented by a Breathing Separation module that reconstructed the correct breathing
signals of multiple co-located individuals. The Motion Detection module, integrated with a
convolutional neural network that ignored unpurposeful movements, helped to stabilize
breathing signals during movement, while the Identity Matching module assessed the
periods of stable breathing with no motion. Authors applied DeepBreath to 13 couples
for 21 nights of sleep and a global amount of 151 h of data. The correlation between two
breathing belts on the chest and on the belly was around 0.915, revealing a high accuracy
of the recovered breathing signals. Specifically, the recovered breathing signal had an
average correlation of 0.914 with the breathing belt signal measured on the subject’s chest.
DeepBreath also recovered the breathing rates of the monitored subjects with an average
error as small as 0.140 breaths per minute. In this study, authors also tested the proposed
system with subjects sitting shoulder to shoulder on one couch and obtained an average
correlation of 0.922 with the ground truth breathing signals.
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Figure 7. Wi-Fi-based sensing can be used for remote monitoring of human activities during COVID-19
pandemics, such as respiratory dynamics. Three layers summarize the working process of the Wi-COVID
from the bottom to the top of the image. First, a Wi-Fi sensing, like Raspberry PI, records the respiratory
signal, then, in the processing phase the respiratory parameters are obtained using the Cloud and finally
real-time streamed with alerts. (Reproduced under the terms and conditions of the Creative Commons
Attribution (CC BY) license from [173,174]).

2.5. Sleep Monitoring

The medical gold standard for sleep staging is based on Polysomnography conducted
overnight at home, hospital or in a sleep lab. Such a polygraphic study requires wearing
multiple sensors including an EEG monitor, an EMG monitor, an EOG monitor, ECG
monitor, multiple chest bands and nasal probes during sleep [175]. Furthermore, sleep
monitoring must deal with many issues, such as poor interference with sleep quality and
continuity, privacy preservation and favorable lightning conditions. Accelerometer-based
sensors obtained good results [176–178], but vision-based systems were more comfortable
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for the user [179–181]. However, privacy-intrusiveness and susceptibility to lightning
conditions limited their applicability [179–181]. Application of radar-based technology to
sleep monitoring is a poorly described issue in literature [182–184]. Classical studies in [65]
showed poor power to discriminate signals due to sleep from other types of motion. How-
ever, analysis of literature shows some studies that focused on sleep staging [185] and apnea
detection [186,187]. Yue, Yang [188] tested a RF-based system, known as BodyCompass,
to estimate the sleep posture accurately even when the person was still on the bed, by
analyzing all reflected waves, including also all the indirect reflections due to multipath.
Traditional RF-based models reach up high accuracy performances taking advantage of the
motion of the people [133,134]; while, being static asleep in bed is not an ideal scenario to
capture fine motion. The authors solved this problem through analysis of the multipath.
Results highlighted the high accuracy of BodyCompass during the registration of sleep
postures of 26 subjects during more than 200 nights. Accuracy was 94% using one week
of data from the user and 83.7% using only 16 min of data. Zhao, Yue [175] studied the
role of CNN and recurrent neural network (RNN) in predicting sleep stages, focusing on a
new predictive model that learns sleep stages from RF signals. In particular, CNN learns
stage-specific features that can distinguish between being awake, rapid eye movements
(REM) and from deep and light sleep, while RNN determines if the sleep is light or deep.
Once the model was trained without the RNN layer on top of CNN, the overall accuracy
decreased by 12.8%. Specifically, the precision to discriminate between light and deep
sleep decreased by 23.5%, revealing the fundamental role of RNN. Results also showed
that the progression of light and deep sleep through the night was determined by specific
temporal patterns [189]. For example, the probability of being in deep sleep decreases
as sleep progresses, coherent with the need to go through light sleep before getting into
deep sleep. These temporal dynamics of sleep stages can be captured by RNN in order
to distinguish light and deep sleep. Hsu, Ahuja [65] proposed a RF-based model, known
as EZ-sleep, to assess key sleep parameters: a sensor was attached on the outlet power
and identified bed location, bed entries and exits, classified sleep and awake periods and
computed sleep parameters by the analysis of reflected waves. The authors measured sleep
latency (time between going to bed and falling asleep, SL), sleep efficiency (the percentage
of sleep time to the time in bed, or sleep SE), the total sleep time (TST) and the amount of
wakefulness after falling asleep (WASO). In this way, they were able to monitor the user
via RF signals. Average error in predicting TST, SL, SE, and WASO was 10.3 min, 4.9 min,
2.8%, and 8.2 min, respectively. Then, the study focused on the simultaneous monitoring of
multiple subjects sleeping in different beds. Average errors in TST, SL, and WASO were
15.8 min, 7.6 min, 1.8%, 13.1 min, showing acceptable errors and were comparable to the
case of a single person [190].

3. Discussion

Recent trends in the field of telemedicine have focused on integrating new technologies
and the existing monitoring systems for an objective assessment of the motor performances
and vital signs. Movement monitoring can help to recognize both movement disorders
themselves but also motor patterns during time spent in the house, while vital signs
monitoring can prevent life-threatening events even during sleep. In this context, indoor
activities monitoring have drawn attention for several reasons. First, indoor activities
appear more difficult than outdoor ones for elderly subjects, since ADLs comprise both
gross and fine movements, such as eating, getting dressed and having a bath. In addition,
different home settings are dangerous and increase the subjects’ risk of being involved in
serious accidents. Furthermore, indoor monitoring accuracy depends so far on several
unpredictable factors, such as subject compliance, lightning conditions, physical obstacles,
multiple moving people, and privacy concerns. These considerations explain why provid-
ing a discrete monitoring ina natural environment is currently a hot topic in the scientific
community. In this review, we exposed a deep and comprehensive summary about some
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of the potential and currently existing methods for patients indoor monitoring and offered
a comparison between them (Figure 8).
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Traditional inertial devices have good accuracy standards, but they are often uncom-
fortable, require high standards of compliance and suffer from systematic error accumula-
tion. Optical tracking systems generally need on-body colored markers and line-of-sight for
the motor assessment and are affected by privacy concerns. In addition, several cameras,
calibration, and preprocessing techniques are required for a precise construction of each
frame. Geomagnetism-based technology has high positioning and ranging standards, since
it takes advantage of a natural physical medium and does not require any hardware but
suffers from positioning resolution standards in the order of meters, that limit its usage for
fine movement discrimination. Radiofrequency-based techniques represent a novel and
heterogeneous category of indoor localization systems, whose physical principle is based
on the analysis of the pattern of reflected waves. IR-UWB is a radar position technology
based on a wide bandwidth with high penetrability and not intrusive standards. Thanks to
signals excellent penetrability, IR-UWB radars can be installed on the wall and is able to
observe the target without attracting any attention from him. Furthermore, radiofrequency
-based technology associated with Doppler radars can detect vital signs on the baseline, dur-
ing ADLs with high precision, since their complementary characteristics help to estimate
both velocity and position. This system can be employed in different monitoring settings,
such as home, hospital or school to continuously assess movement and detect falls during
daily life activities, without requiring high levels of compliance from patients and their
caregivers. In addition, IR-UWB guarantees a whole body tremor assessment, with no need
of preprocessing algorithms and post-recording filters. Possible benefits could be achieved
by the combination of UWB and IMU, such as UWB high accuracy localization standards
UWB and IMU localization signal stability, robust NLoS localization and capability for
motion tracking. In addition, positioning error and acceptable energy consumption were
significantly lower than the conventional methods. However, these studies also pointed
out the well-known limit of error accumulation of the IMU measurements, while the UWB
measurement showed random errors that increased when there was a NLoS occlusion
between the sensor node and the UWB anchors. Systematic error accumulation reduces the
accuracy and needs to be implemented with specific algorithms. Furthermore, these devices
are bulky, with wired connections, and are uncomfortable for wearable applications [6].
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4. Conclusions

The aforementioned studies will provide a positive impulse on the use of the radar
smart sensors in different real-life scenarios for simultaneous detection of vital signs and
critical events [41]. The UWB data transmission capabilities can be further used to transfer
data from the sensor node to an UWB hub with internet access to enable long-term monitor-
ing. A hub would then send recorded data to a health care centre for real-time monitoring
of vital signs and movement. The goal is a cost-effective, lightweight and energy-efficient
contactless indoor localization module based on extremely low radiation that can penetrate
walls in any light conditions and collect accurate data continuously. Further studies are
still needed to make this technology feasible for clinical practice. However, it is wise to
say that clinical practice could take advantage of this novel methodology only in the next
future, because RF-technology has only been recently tested in the medical field. It is likely
that new trials, involving a larger number of subjects and real-life-simulating situations,
will be a needed step. In the short and mid-term, the usage of this technology is far distant
since a reliable clinical validation requires a precise standardization with precise protocols.
In the future, multiple small size and synchronized UWB-based devices and placed in
different locations in an indoor environment are expected to offer continuous non-contact
3-D movement assessment. This would provide a cutting-edge solution in the medical
community to recognize acute life-threatening events and prevent them and at the same
time diagnose diseases in their early phase. Furthermore, the pervasive monitoring during
the entire day is a caveat that highlights the need for privacy issue regulator protocols,
preventing possible misuse. A continuous registration of subject’s activities could raise
ethical issues, since it could lead to sense human trajectories and locate them in space [191].
However, RF signals are not human-interpretable straightway, since monitored people
are depicted as a variation of signals and subsequent extrapolated data. Furthermore, a
challenge-response authentication protocol could be introduced to cut down the monitoring
for non-authorized areas. New scenarios for remote and automatic monitoring of patients
on a regular basis could be finally opened. Long-term radar-based monitoring could be
applied to assess new parameters of gait and sleep as opposed to traditional methods, and
to establish the progression of disease and the improvements between the clinical visits.
Clinical assessment rates would be increased, receiving more information to tailor the
therapy based on needs. The ultimate result would be a better control of the symptoms
and an easier patient follow-up.
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25. Milosevic, M.; Jovanov, E.; Milenković, A. Quantifying Timed-Up-and-Go test: A smartphone implementation. In Proceedings of
the 2013 IEEE International Conference on Body Sensor Networks, Cambridge, MA, USA, 6–9 May 2013; IEEE: Piscataway, NJ,
USA, 2013.

26. Dai, J.; Bai, X.; Yang, Z.; Shen, Z.; Xuan, D. A pervasive fall detection system using mobile phones. In Proceedings of the 2010 8th
IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), Mannheim,
Germany, 29 March–2 April 2010.

27. Lee, X.G.; Low, K.S.; Taher, T. Unrestrained measurement of arm motion based on a wearable wireless sensor network. IEEE
Trans. Instrum. Meas. 2010, 59, 1309–1317. [CrossRef]

28. Geman, O.; Costin, H. Automatic assessing of tremor severity using nonlinear dynamics, artificial neural networks and neuro-
fuzzy classifier. Adv. Electr. Comput. Eng. 2014, 14, 133–139. [CrossRef]

http://doi.org/10.3389/fneur.2018.00121
http://www.ncbi.nlm.nih.gov/pubmed/29568281
http://doi.org/10.1109/TNSRE.2020.2987020
http://doi.org/10.3390/s20123529
http://doi.org/10.3390/life12020206
http://doi.org/10.3390/jcm11144184
http://doi.org/10.3171/2018.5.FOCUS18155
http://doi.org/10.1097/00004691-199603000-00002
http://doi.org/10.1093/brain/awx104
http://doi.org/10.1080/14737175.2021.2000392
http://www.ncbi.nlm.nih.gov/pubmed/34736368
http://doi.org/10.1109/JBHI.2019.2918412
http://www.ncbi.nlm.nih.gov/pubmed/31135373
http://doi.org/10.1109/JSEN.2017.2697077
http://doi.org/10.3233/JAD-141767
http://www.ncbi.nlm.nih.gov/pubmed/25362036
http://doi.org/10.3390/s20226670
http://doi.org/10.3390/s20205774
http://doi.org/10.1109/RBME.2018.2807182
http://doi.org/10.1109/TBME.2010.2083659
http://doi.org/10.1109/TSP.2012.2199314
http://doi.org/10.1109/TIM.2010.2043974
http://doi.org/10.4316/AECE.2014.01020


Sensors 2022, 22, 8486 20 of 25

29. Tsanas, A.; Little, M.A.; McSharry, P.E.; Spielman, J.; Ramig, L.O. Novel speech signal processing algorithms for high-accuracy
classification of Parkinson’s disease. IEEE Trans. Biomed. Eng. 2012, 59, 1264–1271. [CrossRef] [PubMed]

30. Hariharan, M.; Polat, K.; Sindhu, R. A new hybrid intelligent system for accurate detection of Parkinson’s disease. Comput.
Methods Programs Biomed. 2014, 113, 904–913. [CrossRef] [PubMed]

31. Bachlin, M.; Plotnik, M.; Roggen, D.; Maidan, I.; Hausdorff, J.M.; Giladi, N.; Troster, G. Wearable assistant for Parkinson’s disease
patients with the freezing of gait symptom. IEEE Trans. Inf. Technol. Biomed. 2009, 14, 436–446. [CrossRef]

32. Tripoliti, E.E.; Tzallas, A.T.; Tsipouras, M.G.; Rigas, G.; Bougia, P.; Leontiou, M.; Konitsiotis, S.; Chondrogiorgi, M.; Tsouli, S.;
Fotiadis, D.I. Automatic detection of freezing of gait events in patients with Parkinson’s disease. Comput. Methods Programs
Biomed. 2013, 110, 12–26. [CrossRef]

33. Jovanov, E.; Wang, E.; Verhagen, L.; Fredrickson, M.; Fratangelo, R. deFOG—A real time system for detection and unfreezing of
gait of Parkinson’s patients. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; IEEE: Piscataway, NJ, USA, 2009.

34. Khan, S.S.; Hoey, J. Review of fall detection techniques: A data availability perspective. Med. Eng. Phys. 2017, 39, 12–22. [CrossRef]
35. Grydeland, M.; Hansen, B.H.; Ried-Larsen, M.; Kolle, E.; Anderssen, S.A. Comparison of three generations of ActiGraph activity

monitors under free-living conditions: Do they provide comparable assessments of overall physical activity in 9-year old children?
BMC Sport. Sci. Med. Rehabil. 2014, 6, 1–8. [CrossRef]

36. Hegde, N.; Bries, M.; Sazonov, E. A comparative review of footwear-based wearable systems. Electronics 2016, 5, 48. [CrossRef]
37. Sun, S.; Zhao, X.; Tan, M. Fast and Robust RGB-D Multiple Human Tracking Based on Part Model for Mobile Robots. In

Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; IEEE: Piscataway, NJ, USA, 2019.
38. Panahi, L.; Ghods, V. Human fall detection using machine vision techniques on RGB–D images. Biomed. Signal Process. Control

2018, 44, 146–153. [CrossRef]
39. D’Orazio, T.; Marani, R.; Renò, V.; Cicirelli, G. Recent trends in gesture recognition: How depth data has improved classical

approaches. Image Vis. Comput. 2016, 52, 56–72. [CrossRef]
40. Camplani, M.; Paiement, A.; Mirmehdi, M.; Damen, D.; Hannuna, S.; Burghardt, T.; Tao, L. Multiple human tracking in RGB-depth

data: A survey. IET Comput. Vis. 2017, 11, 265–285. [CrossRef]
41. Diraco, G.; Leone, A.; Siciliano, P. A radar-based smart sensor for unobtrusive elderly monitoring in ambient assisted living

applications. Biosensors 2017, 7, 55. [CrossRef] [PubMed]
42. Morita, P.P.; Rocha, A.S.; Shaker, G.; Lee, D.; Wei, J.; Fong, B.; Thatte, A.; Karimi, A.; Xu, L.; Ma, A.; et al. Comparative Analysis of

Gait Speed Estimation Using Wideband and Narrowband Radars, Thermal Camera, and Motion Tracking Suit Technologies. J.
Healthc. Inform. Res. 2020, 4, 215–237. [CrossRef] [PubMed]

43. Zhang, H.; Zhang, Z.; Gao, N.; Xiao, Y.; Meng, Z.; Li, Z. Cost-effective wearable indoor localization and motion analysis via the
integration of UWB and IMU. Sensors 2020, 20, 344. [CrossRef]

44. He, S.; Chan, S.-H.G. Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Commun. Surv. Tutor.
2015, 18, 466–490. [CrossRef]

45. Lashkari, A.H.; Parhizkar, B.; Ngan, M.N.A. WIFI-based indoor positioning system. In Proceedings of the 2010 Second International
Conference on Computer and Network Technology, Washington, DC, USA, 23–25 April 2010; IEEE: Piscataway, NJ, USA, 2010.

46. Alrajeh, N.A.; Bashir, M.; Shams, M. Localization techniques in wireless sensor networks. Int. J. Distrib. Sens. Netw. 2013, 9, 304628.
[CrossRef]

47. Wang, W.; Chen, J.; Hong, T.; Zhu, N. Occupancy prediction through Markov based feedback recurrent neural network (M-FRNN)
algorithm with WiFi probe technology. Build. Environ. 2018, 138, 160–170. [CrossRef]

48. Pecoraro, G.; Di Domenico, S.; Cianca, E.; De Sanctis, M. LTE signal fingerprinting localization based on CSI. In Proceedings of
the 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob),
Rome, Italy, 9–11 October 2017; IEEE: Piscataway, NJ, USA, 2017.

49. Pecoraro, G.; Cianca, E.; Di Domenico, S.; De Sanctis, M. LTE Signal Fingerprinting Device-Free Passive Localization Robust to
Environment Changes. In Proceedings of the 2018 Global Wireless Summit (GWS), Chiang Rai, Thailand, 25–28 November 2018;
IEEE: Piscataway, NJ, USA, 2018.

50. Pecoraro, G.; Di Domenico, S.; Cianca, E.; De Sanctis, M. CSI-based fingerprinting for indoor localization using LTE signals.
EURASIP J. Adv. Signal Process. 2018, 2018, 49. [CrossRef]

51. Cianca, E.; Pecoraro, G.; De Sanctis, M.; Di Domenico, S. LTE signal fingerprinting device-free passive localization in changing
environments. J. Mob. Multimed. 2019, 15, 141–162. [CrossRef]

52. Li, N.; Becerik-Gerber, B. Performance-based evaluation of RFID-based indoor location sensing solutions for the built environment.
Adv. Eng. Inform. 2011, 25, 535–546. [CrossRef]

53. Filippoupolitis, A.; Oliff, W.; Loukas, G. Bluetooth low energy based occupancy detection for emergency management. In
Proceedings of the 2016 15th International Conference on Ubiquitous Computing and Communications and 2016 International
Symposium on Cyberspace and Security (IUCC-CSS), Granada, Spain, 14–16 December 2016; IEEE: Piscataway, NJ, USA, 2016.

54. Santoso, F.; Redmond, S.J. Indoor location-aware medical systems for smart homecare and telehealth monitoring: State-of-the-art.
Physiol. Meas. 2015, 36, R53. [CrossRef] [PubMed]

http://doi.org/10.1109/TBME.2012.2183367
http://www.ncbi.nlm.nih.gov/pubmed/22249592
http://doi.org/10.1016/j.cmpb.2014.01.004
http://www.ncbi.nlm.nih.gov/pubmed/24485390
http://doi.org/10.1109/TITB.2009.2036165
http://doi.org/10.1016/j.cmpb.2012.10.016
http://doi.org/10.1016/j.medengphy.2016.10.014
http://doi.org/10.1186/2052-1847-6-26
http://doi.org/10.3390/electronics5030048
http://doi.org/10.1016/j.bspc.2018.04.014
http://doi.org/10.1016/j.imavis.2016.05.007
http://doi.org/10.1049/iet-cvi.2016.0178
http://doi.org/10.3390/bios7040055
http://www.ncbi.nlm.nih.gov/pubmed/29186786
http://doi.org/10.1007/s41666-020-00071-7
http://www.ncbi.nlm.nih.gov/pubmed/35415448
http://doi.org/10.3390/s20020344
http://doi.org/10.1109/COMST.2015.2464084
http://doi.org/10.1155/2013/304628
http://doi.org/10.1016/j.buildenv.2018.04.034
http://doi.org/10.1186/s13634-018-0563-7
http://doi.org/10.13052/jmm1550-4646.1531
http://doi.org/10.1016/j.aei.2011.02.004
http://doi.org/10.1088/0967-3334/36/10/R53
http://www.ncbi.nlm.nih.gov/pubmed/26306639


Sensors 2022, 22, 8486 21 of 25

55. Sugino, K.; Katayama, S.; Niwa, Y.; Shiramatsu, S.; Ozono, T.; Shintani, T. A bluetooth-based device-free motion detector for a
remote elder care support system. In Proceedings of the 2015 IIAI 4th International Congress on Advanced Applied Informatics,
Okayama, Japan, 12–16 July 2015; IEEE: Piscataway, NJ, USA, 2015.

56. Fujihara, A.; Yanagizawa, T. Proposing an extended iBeacon system for indoor route guidance. In Proceedings of the 2015
International Conference on Intelligent Networking and Collaborative Systems, Taipei, Taiwan, 2–4 September 2015; IEEE:
Piscataway, NJ, USA, 2015.

57. Alam, M.A.U.; Pathak, N.; Roy, N. Mobeacon: An iBeacon-Assisted SmartphoneBased Real Time Activity Recognition Framework.
UMBC Stud. Collect. 2015, 130–139. [CrossRef]

58. Filippoupolitis, A.; Oliff, W.; Loukas, G. Occupancy detection for building emergency management using BLE beacons. In
International Symposium on Computer and Information Sciences; Czachórski, T., Gelenbe, E., Grochla, K., Lent, R., Eds.; Springer:
Cham, Switzerland, 2016.

59. Tekler, Z.D.; Low, R.; Gunay, B.; Andersen, R.K.; Blessing, L. A scalable Bluetooth Low Energy approach to identify occupancy
patterns and profiles in office spaces. Build. Environ. 2020, 171, 106681. [CrossRef]

60. Tekler, Z.D.; Low, R.; Blessing, L. An alternative approach to monitor occupancy using bluetooth low energy technology in an
office environment. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019.

61. Zhang, G.; Vahia, I.V.; Liu, Y.; Yang, Y.; May, R.; Cray, H.V.; McGrory, W.; Katabi, D. Contactless In-Home Monitoring of the Long-Term
Respiratory and Behavioral Phenotypes in Older Adults With COVID-19: A Case Series. Front. Psychiatry 2021, 12, 754169. [CrossRef]

62. Adib, F.; Kabelac, Z.; Katabi, D. Multi-Person Localization via RF Body Reflections. In Proceedings of the 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15), Oakland, CA, USA, 4–6 May 2015.

63. Adib, F.; Mao, H.; Kabelac, Z.; Katabi, D.; Miller, R.C. adibadi breathing and heart rate. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems, Seoul, Korea, 18 April 2015.

64. Shaban, H.A.; El-Nasr, M.A.; Buehrer, R.M. Toward a highly accurate ambulatory system for clinical gait analysis via UWB radios.
IEEE Trans. Inf. Technol. Biomed. 2009, 14, 284–291. [CrossRef]

65. Hsu, C.Y.; Ahuja, A.; Yue, S.; Hristov, R.; Kabelac, Z.; Katabi, D. Zero-effort in-home sleep and insomnia monitoring using radio
signals. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2017, 1, 1–18. [CrossRef]

66. Li, C.; Lubecke, V.M.; Boric-Lubecke, O.; Lin, J. A review on recent advances in Doppler radar sensors for noncontact healthcare
monitoring. IEEE Trans. Microw. Theory Tech. 2013, 61, 2046–2060. [CrossRef]

67. Yue, S.; He, H.; Wang, H.; Rahul, H.; Katabi, D. Extracting multi-person respiration from entangled RF signals. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol. 2018, 2, 1–22. [CrossRef]

68. Zou, Y.; Wang, G.; Wu, K.; Ni, L.M. SmartScanner: Know more in walls with your smartphone! IEEE Trans. Mob. Comput. 2015,
15, 2865–2877. [CrossRef]

69. He, S.; Shin, K.G. Geomagnetism for smartphone-based indoor localization: Challenges, advances, and comparisons. ACM
Comput. Surv. 2017, 50, 1–37. [CrossRef]

70. Santos, R.; Barandas, M.; Leonardo, R.; Gamboa, H. Fingerprints and Floor Plans Construction for Indoor Localisation Based on
Crowdsourcing. Sensors 2019, 19, 919. [CrossRef] [PubMed]

71. Zhang, C.; Subbu, K.P.; Luo, J.; Wu, J. GROPING: Geomagnetism and crowdsensing powered indoor navigation. IEEE Trans. Mob.
Comput. 2014, 14, 387–400. [CrossRef]

72. Shu, Y.; Bo, C.; Shen, G.; Zhao, C.; Li, L.; Zhao, F. Magicol: Indoor localization using pervasive magnetic field and opportunistic
WiFi sensing. IEEE J. Sel. Areas Commun. 2015, 33, 1443–1457. [CrossRef]

73. Davidson, P.; Takala, J. Algorithm for pedestrian navigation combining IMU measurements and gait models. Gyroscopy Navig.
2013, 4, 79–84. [CrossRef]

74. Zheng, L.; Zhou, W.; Tang, W.; Zheng, X.; Peng, A.; Zheng, H. A 3D indoor positioning system based on low-cost MEMS sensors.
Simul. Model. Pract. Theory 2016, 65, 45–56. [CrossRef]

75. Chung, J.; Donahoe, M.; Schmandt, C.; Kim, I.J.; Razavai, P.; Wiseman, M. Indoor location sensing using geo-magnetism. In
Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services, Bethesda, MD, USA, 28 June 2011.

76. Infrastructure, L.E.C.; Layer, M.L.P. Ieee Standard for Low-Rate Wireless Networks. IEEE Stand. 2015, 2015, 1–708.
77. Pirch, H.-J.; Global, H.; Leong, F. Introduction to Impulse Radio UWB Seamless Access Systems. In Proceedings of the Fraunhofer

SIT ID:SMART Worksho, Darmstadt, Germany, 19–20 February 2020.
78. Rüdiger, M.; Maria, F.; Rodney, C.; Adele, G.; Kari, J.; Carmela, M.; Richard, S.; Karl, S.; Pier, S.; Stuck, B.E.; et al. (International

Commission on Non-Ionizing Radiation Protection). ICNIRP Guidelines for Limiting Exposure to Electric Fields Induced by
Movement of the Human Body in a Static Magnetic Field and by Time-Varying Magnetic Fields below 1 Hz. Health Phys. 2014,
106, 418–425.

79. Federal Communications Commission. FCC 02-48—Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband
Transmission Systems, FIRST REPORT AND ORDER. 2002. Available online: http://www.fcc.gov/Bureaus/Engineering_
Technology/Orders/2002/fcc02048.pdf (accessed on 1 October 2022).

80. Cavagnaro, M.; Pisa, S.; Pittella, E. Safety aspects of human exposure to ultra wideband radar fields. In Proceedings of the
International Symposium on Electromagnetic Compatibility-EMC EUROPE, Rome, Italy, 17–21 September 2012; IEEE: Piscataway,
NJ, USA, 2012.

http://doi.org/10.4108/eai.22-7-2015.2260073
http://doi.org/10.1016/j.buildenv.2020.106681
http://doi.org/10.3389/fpsyt.2021.754169
http://doi.org/10.1109/TITB.2009.2037619
http://doi.org/10.1145/3130924
http://doi.org/10.1109/TMTT.2013.2256924
http://doi.org/10.1145/3214289
http://doi.org/10.1109/TMC.2015.2508811
http://doi.org/10.1145/3139222
http://doi.org/10.3390/s19040919
http://www.ncbi.nlm.nih.gov/pubmed/30813228
http://doi.org/10.1109/TMC.2014.2319824
http://doi.org/10.1109/JSAC.2015.2430274
http://doi.org/10.1134/S207510871302003X
http://doi.org/10.1016/j.simpat.2016.01.003
http://www.fcc.gov/Bureaus/Engineering_Technology/Orders/2002/fcc02048.pdf
http://www.fcc.gov/Bureaus/Engineering_Technology/Orders/2002/fcc02048.pdf


Sensors 2022, 22, 8486 22 of 25

81. Ali, A.M.; Al Ghamdi, M.A.; Iqbal, M.M.; Khalid, S.; Aldabbas, H.; Saeed, S. Next-generation UWB antennas gadgets for human
health care using SAR. EURASIP J. Wirel. Commun. Netw. 2021, 2021, 33. [CrossRef]

82. Mahmood, T.; Mahmood, O.A.; L-Qaysi, H.K.A. An Improvement the Channel Characteristics Performance of Ultra-Wideband
(UWB) by Controlling the Main Channel Parameters. Des. Eng. 2021, 2021, 1329–1340.

83. Halder, S.; Ghosal, A. A survey on mobility-assisted localization techniques in wireless sensor networks. J. Netw. Comput. Appl.
2016, 60, 82–94.

84. Oguntala, G.; Abd-Alhameed, R.; Jones, S.; Noras, J.; Patwary, M.; Rodriguez, J. Indoor location identification technologies for
real-time IoT-based applications: An inclusive survey. Comput. Sci. Rev. 2018, 30, 55–79. [CrossRef]

85. Alarifi, A.; Al-Salman, A.; Alsaleh, M.; Alnafessah, A.; Al-Hadhrami, S.; Al-Ammar, M.A.; Al-Khalifa, H.S. Ultra wideband indoor
positioning technologies: Analysis and recent advances. Sensors 2016, 16, 707. [CrossRef] [PubMed]

86. Gigl, T.; Janssen, G.J.; Dizdarevic, V.; Witrisal, K.; Irahhauten, Z. Analysis of a UWB indoor positioning system based on received
signal strength. In Proceedings of the 2007 4th Workshop on Positioning, Navigation and Communication, Hannover, Germany,
22 March 2007; IEEE: Piscataway, NJ, USA, 2007.

87. Cheng, G. Accurate TOA-based UWB localization system in coal mine based on WSN. Phys. Procedia 2012, 24, 534–540. [CrossRef]
88. Segura, M.; Mut, V.; Sisterna, C. Ultra wideband indoor navigation system. IET Radar Sonar Navig. 2012, 6, 402–411. [CrossRef]
89. Fischer, G.; Klymenko, O.; Martynenko, D.; Luediger, H. An impulse radio UWB transceiver with high-precision TOA measure-

ment unit. In Proceedings of the 2010 International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland,
15–17 September 2010; IEEE: Piscataway, NJ, USA, 2010.

90. Krishnan, S.; Sharma, P.; Guoping, Z.; Woon, O.H. A UWB based localization system for indoor robot navigation. In Proceedings of the
2007 IEEE International Conference on Ultra-Wideband, Singapore, 24–26 September 2007; IEEE: Piscataway, NJ, USA, 2007.

91. Rowe, N.C.; Fathy, A.E.; Kuhn, M.J.; Mahfouz, M.R. A UWB transmit-only based scheme for multi-tag support in a millimeter
accuracy localization system. In Proceedings of the 2013 IEEE Topical Conference on Wireless Sensors and Sensor Networks
(WiSNet), Austin, TX, USA, 20–23 January 2013; IEEE: Piscataway, NJ, USA, 2013.

92. Lee, Y.U. Weighted-average based aoa parameter estimations for LR-UWB wireless positioning system. IEICE Trans. Commun.
2011, 94, 3599–3602. [CrossRef]

93. Subramanian, A. UWB linear quadratic frequency domain frequency invariant beamforming and angle of arrival estimation.
In Proceedings of the 2007 IEEE 65th Vehicular Technology Conference-VTC2007-Spring, Dublin, Ireland, 22–25 April 2007;
IEEE: Piscataway, NJ, USA, 2007.

94. Gezici, S.; Tian, Z.; Giannakis, G.B.; Kobayashi, H.; Molisch, A.F.; Poor, H.V.; Sahinoglu, Z. Localization via ultra-wideband radios:
A look at positioning aspects for future sensor networks. IEEE Signal Process. Mag. 2005, 22, 70–84. [CrossRef]

95. Chong, C.-C.; Watanabe, F.; Win, M.Z. Effect of bandwidth on UWB ranging error. In Proceedings of the 2007 IEEE Wireless
Communications and Networking Conference, Hong Kong, China, 11–15 March 2007; IEEE: Piscataway, NJ, USA, 2007.

96. Win, Z.M.; Scholtz, R.A. Impulse radio: How it works. IEEE Commun. Lett. 1998, 2, 36–38. [CrossRef]
97. Molisch, A.F. Ultra-wide-band propagation channels. Proc. IEEE 2009, 97, 353–371. [CrossRef]
98. Yang, X. NLOS mitigation for UWB localization based on sparse pseudo-input Gaussian process. IEEE Sens. J. 2018, 18, 4311–4316.

[CrossRef]
99. Xu, Y.; Shmaliy, Y.S.; Ahn, C.K.; Tian, G.; Chen, X. Robust and accurate UWB-based indoor robot localisation using integrated

EKF/EFIR filtering. IET Radar Sonar Navig. 2018, 12, 750–756. [CrossRef]
100. Ridolfi, M.; Vandermeeren, S.; Defraye, J.; Steendam, H.; Gerlo, J.; De Clercq, D.; Hoebeke, J.; De Poorter, E. Experimental

evaluation of UWB indoor positioning for sport postures. Sensors 2018, 18, 168. [CrossRef] [PubMed]
101. Minne, K.; Macoir, N.; Rossey, J.; Van den Brande, Q.; Lemey, S.; Hoebeke, J.; De Poorter, E. Experimental evaluation of UWB

indoor positioning for indoor track cycling. Sensors 2019, 19, 2041. [CrossRef] [PubMed]
102. De Sanctis, M.; Conte, A.; Rossi, T.; Di Domenico, S.; Cianca, E. CIR-Based Device-Free People Counting via UWB Signals. Sensors

2021, 21, 3296. [CrossRef] [PubMed]
103. Di Domenico, S.; Pecoraro, G.; Cianca, E.; De Sanctis, M. Trained-once device-free crowd counting and occupancy estimation

using WiFi: A Doppler spectrum based approach. In Proceedings of the 2016 IEEE 12th International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob), New York, NY, USA, 17–19 October 2016; IEEE: Piscataway, NJ,
USA, 2016.

104. Kilic, Y.; Wymeersch, H.; Meijerink, A.; Bentum, M.J.; Scanlon, W.G. Device-free person detection and ranging in UWB networks.
IEEE J. Sel. Top. Signal Process. 2013, 8, 43–54. [CrossRef]

105. Nguyen, V.-H.; Pyun, J.-Y. Location detection and tracking of moving targets by a 2D IR-UWB radar system. Sensors 2015, 15, 6740–6762.
[CrossRef]

106. Cimdins, M.; Schmidt, S.O.; Hellbrück, H. MAMPI-UWB—Multipath-assisted device-free localization with magnitude and phase
information with UWB transceivers. Sensors 2020, 20, 7090. [CrossRef]
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